
Tetrahedron Letters,Vol.27,No.l6,pp 1811-1814,1986 0040-4039/86 $3.00 + -00 
Printed in Great Britain 01986 Perqamon Press Ltd. 

SYNTHETIC STUDIES OF ERYTHROMYCINS. II. 
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Hiyoshi, Kohoku-ku, Yokohama 223, JAPAN 

sumnary: (3R,4R,5R)-5-0-Benzyl-2-iodo-3,4-O-isopropylidene-4-methyl-l-heptene-3,4,5-triol 3, 
a C-10-C-13 synthetic segment of erythronolide A (lJ was enantiospecifically synthesized in 
sixteen steps and 8.3% overall yield from D-ribose. 

The successful total synthesis of erythronolide A (A), aglycone of the medicinally 

important 14-membered macrolide antibiotic erythromycin A, has recently been achieved by two 

Harvard groups, 2,3 one of which succeeded during the final stages of their conquest of 

erythromycin A itself. 
3 

Other synthetic efforts have been announced. 
4 

In the studies 

directed toward the enantiospecific synthesis of A, the C-l-C-6 segment2 of k was synthesized 

from D-glucose, 
1 

being considered to be practically viable and also well suited for a 
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stereoselective coupling reaction with a second chiral synthetic segment (Scheme 1). 

Recently, it has been found5 that addition reaction of the chiral vinyllithium compound 5 to 

BnO+OBn +--&OBn BnO 

4 2 

the chiral aldehyde $+ afforded predominantly the "Cram" product2, which was subsequently 

hydrogenated with Wilkinson's catalyst to give solely the anti-epimerz, a synthetic precursor 

of the aliphatic segment of rifamycin W (Scheme 2). This result suggested a retrosynthesis of 

erythronolide A (IJ which led to the new synthetic segments, 2 and 2, corresponding to the 

C-10-C-13 and C-l-C-9 portions of A, through (9S)-9-dihydroerythronolide A6(IJ and the acyclic 

(g), (IS), and (z) (Scheme 1). The 3,5:9,11_bis(cyclic acetal) derivative of the (9S)-seco- 

acid (g) has been shown to be an excellent substrate 
3 

for the cyclization to 14-membered 

macrolactone such as (A). This report will describe the enantiospecific synthesis of the 

segment ;E from D-ribose, which served to realize our synthetic plan of ,&. 
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The acetonide z7 was obtained in good yield (83%) from D-ribose by the modified O- 

isopropylidenation (acetone, 2,2-dimethoxypropane, coned H2S04, O'C, 3h; 5'C, 20h). Treatment 

of 2 with an excess of methylmagnesium iodide gave 2' as a sole product (73%, mp 72-73'C, 

[aID +28”) , which was transformed in three steps into g 8'q (81.5%, [al, +8", ["I365 +29"). 

PCC oxidation of g afforded the methyl ketone g 8 (95%, [a], +49“, 1R(CHC13) Vmx 1712 cm-'). 

The ketone 2 was treated with an excess of vinylmagnesium bromide in THF to give a 77:1 

mixture in favor of the (2R)-epimer 2 
8,lO 

which was isolable by column chromatography 

( silica-gel, 1O:l hexane-ethyl acetate ) in isomerically pure form (94%, [al, +33'). 

Ozonolysis of 13 followed by addition of ethylmagnesium bromide to the resulting aldehyde 

gave a ca. 1.6:1 mixture of the desired 2 
11 

and its epimer z' in 63.5% yield. Since the 

chromatographic separation of fv4 and J$' was quite difficult, the isomeric ratio was assumed 
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(a) 10 equiv MeMgI, ether, rt, 3h; (b) NaI04, aq acetone, rt, 2h; (c) LiAlH4, THFl 

rt, 2h; (d) 1.2 equiv TBDPSC~, imidasole, DMF, rt, lh; (e) PCC, 3A molecular sieves, 
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CH2C12, rt, 2h; (f) 10 equiv CH2=ChMgBr, THF, rt, 2h; (g) 03, CH2C12, -78'C; Me2S, 

-78°C rt; (h) 8 equiv EtMgBr, ether, rt, 1.5h; (i) 2.2 equiv NaH, 1.5 equiv BnBr, 

THF, rt, 4h; (j) DMSO, DCC, TFA, py, PhH, rt, 5h; (k) LiA1H4, ether, -78'C, 2h: 

(1) 0.5 mol. equiv FeC13, acetone, 29"C, lh; (m) (II-BU)~NF, THF; (n) NH~NH~.H~O, 

Et3N, EtOH, 70°C, lh; (0) 12, tetramethylguanidine, PhMe, O'C, 0.5h. 

based on the isolated yields of the separable products formed by desilylation of the epimeric 

mixture. Direct 0-benzylation of the mixture afforded fortunately only one isomeric 0-benzyl 

derivative g8'11( 55%, [aID +8O) corresponding to the desired (3R)-epimer &4, and a 4.9:1 

mixture of 3' and 2 was recovered in 28% yield. The unchanged epimeric mixture in favor of 

the (3S)-epimer 14' 

V 
--1 

was converted into the ketone E8 (90%, [cllD O", [c11365 -18", IR(CHC13) 

max 3440, 1713 cm ) by DMSO oxidation. LiA1H4 reduction of g gave a !i:l epimeric mixture 

in excess of;t4, which was again benzylated to afford 2 in 55% yield from s; the total yield 

of 2 from g amounted to 43.8%. Brief exposure of g to 0.5 molar equiv of FeC13 in acetone 

(lh, 29OC) led to the isomeric acetonide z8( 95%, [cl], -lEO), which was desilylated to give 

g*( 92%, [al, -4501. The product I$ was then transformed in three steps into the methyl 

ketone g*( 89%, [aID O", [al,,, +25', 
12 

IR(CHC13) V 

into the vinyl iodide 3_8( 

max1720 cm-'), which was converted through 

its hydrazone 55%, 
13 

[aID O', [c1l365 -ll"), according to the 

improved procedure of Barton et al. 
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The (2R)-configuration of 9 was confirmed by the following manner: 
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